Sparse signal processing on estimation grid with constant information distance applied in radar

نویسندگان

  • Edwin de Jong
  • Radmila Pribic
چکیده

Radar obtains its parameters on a grid whose design supports resolution of underlying radar processing. Existing radar exploits a regular grid although the resolution changes with stronger echoes at shorter ranges. We compute the radar resolution from the intrinsic geometrical structure of data models that is characterized in terms of the Fisher information metric. Based on the information-based approach, we design an estimation grid whose cells have a constant Fisher information distance. In addition, we explore how this information-based grid can suit radar processing in practice and propose information-based processing on such an irregular estimation grid by applying the sparse signal processing from compressive sensing. Accordingly, the grid was adjusted to the sensing incoherence needed in sparse signal processing by setting a lower bound for the cell size. Our approach enables an adaptive estimation grid that can be adjusted with respect to the available resolution, the desired sensing incoherence, available computational power, and required operational priorities. The information-based design and processing are illustrated in a one-dimensional case of range estimation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Soft-Input Soft-Output Target Detection Algorithm for Passive Radar

Abstract: This paper proposes a novel scheme for multi-static passive radar processing, based on soft-input soft-output processing and Bayesian sparse estimation. In this scheme, each receiver estimates the probability of target presence based on its received signal and the prior information received from a central processor. The resulting posterior target probabilities are transmitted to the c...

متن کامل

Design and Implementation of Digital Demodulator for Frequency Modulated CW Radar (RESEARCH NOTE)

Radar Signal Processing has been an interesting area of research for realization of programmable digital signal processor using VLSI design techniques. Digital Signal Processing (DSP) algorithms have been an integral design methodology for implementation of high speed application specific real-time systems especially for high resolution radar. CORDIC algorithm, in recent times, is turned out to...

متن کامل

Grid Impedance Estimation Using Several Short-Term Low Power Signal Injections

In this paper, a signal processing method is proposed to estimate the low and high-frequency impedances of power systems using several short-term low power signal injections for a frequency range of 0-150 kHz. This frequency range is very important, and thusso it is considered in the analysis of power quality issues of smart grids. The impedance estimation is used in many power system applicati...

متن کامل

On Sparse Channel Estimation

Channel Estimation is an essential component in applications such as radar and data communication. In multi path time varying environments, it is necessary to estimate time-shifts, scale-shifts (the wideband equivalent of Doppler-shifts), and the gains/phases of each of the multiple paths. With recent advances in sparse estimation (or " compressive sensing "), new estimation techniques have eme...

متن کامل

A New High Frequency Grid Impedance Estimation Technique for the Frequency Range of 2 to150 kHz

Grid impedance estimation is used in many power system applications such as grid connected renewable energy systems and power quality analysis of smart grids. The grid impedance estimation techniques based on signal injection uses Ohm’s law for the estimation. In these methods, one or several signal(s) is (are) injected to Point of Common Coupling (PCC). Then the current through and voltage of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014